
Application-Support Particle Filter for Dynamic
Voltage Scaling of Multimedia Applications

Jae-Beom Lee, Myoung-Jin Kim, Sungroh Yoon, Senior Member, IEEE, and

Eui-Young Chung, Member, IEEE

Abstract—Dynamic Voltage and Frequency Scaling (DVFS) is an effective low-power technique for real-time workloads. Its

effectiveness critically depends on the accurate prediction of the task execution time. Many DVFS approaches have been proposed,

but they are insufficient for highly nonstationary workloads. Several recent DVFS techniques adopted adaptive filters to improve

accuracy. However, their improvement was rather limited, since they mainly focused on applying a filter framework to the target

application without tuning it. We address this issue by proposing Particle Filter (PF)-based video decoders (MPEG2 and H.264) which

exploit application-specific characteristics. More specifically, our PF-based video decoders utilize the size of each frame for the

prediction of its decoding time. Compared to previous work, the PF is more suitable for our purpose, since it achieves higher prediction

accuracy, even for highly nonstationary workloads such as H.264 clips. Our results show that the energy saved by the proposed

approach is comparable to that of the ideal policy called oracle-DVFS, while the existing methods we tested were far inferior to oracle-

DVFS in terms of H.264 video decoding. Additionally, when our method was used, only 0.40 and 6.88 percent of the frames missed

their deadlines with negligible computational overhead for MPEG and H.264, respectively.

Index Terms—Dynamic voltage and frequency scaling, feedback control, low energy, sequential Monte Carlo, particle filter,

nonstationarity.
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1 INTRODUCTION

LOW-POWER design has become a key challenge due to the
widespread use of battery-powered portable multimedia

devices, such as cellular phones, PDAs, MP3 players, and so
on. Dynamic Power Management (DPM) and Dynamic
Voltage and Frequency Scaling (DVFS) are popular system-
level low-power techniques for these devices.

DPM aims at reducing the power consumption of a
system by shutting it down when it is idle [1]. On the other
hand, DVFS aims at reducing the energy consumed by a
task running on a system by scheduling voltage/frequency
(v/f) pairs such that the task is completed within the given
deadline constraints. DVFS is known as one of the most
effective low-power techniques, especially for real-time
embedded systems. In DVFS, it is very important to predict
the task execution time accurately, in order to minimize the
energy consumption (EC) while satisfying the given dead-
line constraints. In many real-time embedded systems, a
task has a periodic nature, but its execution time at each
period significantly varies due to the workload variations.

In hard real-time applications, workload variations are
simply resolved by introducing the concept of the

Remaining Worst case Execution Path (RWEP) [3], which
often requires extensive profiling. RWEP-based DVFS
techniques are conservative in the sense that deadline
satisfaction is considered more important than energy
savings. On the other hand, soft real-time applications are
allowed to violate the given deadline constraints within a
tolerable range and, hence, they can adopt more aggressive
techniques to reduce the energy consumption. Many of the
previous DVFS techniques focused on video decoding,
since it is one of the most popular soft real-time
applications in power-conscious portable devices. For this
reason, we limit our discussion in this paper to multimedia
applications, especially those used for video decoding.

Several variants of RWEP have been proposed for soft
real-time applications by considering the average case or
oracle case rather than the worst case [4], [5]. These methods
profile the execution time and frequency of the code
sections in a target application and predict the execution
time based on the control flow graph (CFG) annotated with
the execution probability of the code sections. Another
group of heuristic methods empirically derive a workload
predictor from application-specific features [6], [7]. The
well-known techniques in this category utilize the frame
size to estimate the task execution time (i.e., frame decoding
time in this case) by profiling and linear regression.
Generally speaking, profiling-based methods statically set
the parameters of their workload predictors during design
time. Hence, their effectiveness can be severely degraded
for unexpected workloads.

To overcome the limitations of profiling-based meth-
ods, several online methods have been proposed. They
can be classified into three main categories. The techni-
ques in the first category nondeterministically make a
decision on v/f pair selection based on the workload
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statistics collected during runtime [8], [9]. Their effective-
ness is limited to stationary workloads. The approaches in
the second category are similar to profiling-based empiri-
cal methods. The only difference is that they provide an
online parameter tuning scheme, but they still have the
same shortcomings as the empirical methods have [7]. The
methods in the final category utilize statistical adaptive
filters [18], [19], [20]. They estimate future workloads
based on the workload history in a statistical framework.
More advanced methods in this category adaptively
correct prediction errors using a feedback mechanism.
These methods show nonmarginal improvements over the
aforementioned methods, but their effectiveness is still not
sufficient for highly nonstationary workloads.

In this paper, we propose a filter-based online method
which exploits some useful application characteristics to
handle highly nonstationary workloads. Our method adopts
an adaptive nonlinear filter called the Particle Filter (PF) [10],
[11] and customizes it for video decoding based on the results
obtained from previous empirical methods. More specifi-
cally, we utilize the frame size as an important application
characteristic for predicting its decoding time. In our frame-
work, we first estimate a function which correlates the frame
size and its decoding time for each frame. Then, the function
is fed to the PF to estimate the frame decoding time. In other
words, the linear function roughly estimates the decoding
time first and then the PF refines the estimates using its error-
covariance feature. The proposed method was implemented
in both MPEG2 and H.264 players and was validated on an
ARM-based real testbed.

The rest of this paper is organized as follows: related
work is presented in Section 2. The motivation of our work
is presented in Section 3. In Section 4, we provide a brief
summary of the particle filter. We propose a PF-based
DVFS technique for real multimedia applications such as
MPEG and H.264/AVC decoders in Section 5. Finally, we
show the effectiveness of our approach by comparing it
with other estimators in Section 6, followed by our
conclusion in Section 7.

2 RELATED WORK

DVFS techniques can be classified into three categories as
briefly addressed in Section 1. We will discuss further
details of these categories in this section.

2.1 DVFS Techniques with Execution Time Profiling

One of the earliest DVFS techniques presented in [12]
proposed an optimal v/f pair scheduling technique under
the assumption that both the task arrival time and execution
time are constant. Later, many profiling-based techniques
were proposed to consider workload variations using the
concepts of the Remaining Worst case Execution Path,
Remaining Average-case Execution Path (RAEP), and
Remaining Oracle-case Execution Path (ROEP). The ap-
proaches presented in [3], [4], and [5] performed path-based
profiling for the control flow graph of a target task and
extracted the RWEP, RAEP, and ROEP, respectively. These
techniques scheduled v/f pairs at several control points
inside a task based on some profiled statistics. Other task-
level DVFS techniques also used the RWEP, RAEP, and

ROEP concepts with profiled statistics [13], [14]. The
limitations of these methods are twofold. First, their
accuracy cannot be guaranteed when they encounter
workloads different from the profiling statistics. Second,
they assume that the workloads are stationary, which
means that the parameters characterizing them are constant
or time invariant, even when they are really time varying.

The more advanced techniques proposed in [8], [9]
performed intratask-level v/f pair scheduling using a
probabilistic distribution function (PDF) or cumulative
distribution function (CDF), which can be collected during
runtime. Even though these methods provide online work-
load statistics, they are still appropriate mostly for sta-
tionary workloads.

2.2 DVFS Techniques with Application
Characteristics

Another group of methods were designed especially for
multimedia applications. They estimated the workloads by
exploiting the correlation between the frame size and the
execution time [6], [15], [16], [17]. In [6], the authors
estimated the MPEG frame decoding time using a linear
function of the frame data sizes. The coefficients of the
linear function are obtained through offline profiling;
hence, its accuracy critically depends on the training data
used. In [17], the authors divided the frame decoding time
into the frame-independent (FI) part and frame-dependent
(FD) part, where the FI part was simply estimated using a
linear function of the number of macro blocks, while the FD
part was estimated from the moving average (MA) of the
FD parts of the previous frames. The authors in [15] focused
on the hierarchical layered structure in MPEG video
streams. Each frame is further divided into slices, each of
which contains several macro blocks. As in the case of
frames, there are different types of macro blocks. Different
types of blocks require different processing times during
decoding. A linear estimation function is designed for each
block type based on profiling and the overall frame
decoding time is estimated by summing the estimations
for all types of blocks. Even though this method showed
impressive results in certain cases, it still needs profiling
and requires the parameters to be tuned during design
time. Also, the estimation accuracy (EA) shows a large
variation depending on the nature of video clips.

2.3 Filter-Based DVFS Techniques

The methods in the final category are based on statistical
adaptive filters. They attempt to follow the variation of the
workloads during runtime. The work in [18] adopted simple
filters such as the moving average and weighted moving average
(WMA) filters. The MA filter predicts the workload
execution time in the next slot as the average time of the
workload in the previous N slots, while the WMA filter uses
the weighted mean of the previous workloads to estimate
the next slot. Their accuracy and tracking speed show a
trade-off relationship with the number of previous slots
considered. Even though these methods are simple enough
to be applicable to DVFS, their estimation accuracy is
limited, due to the absence of an error-correcting feedback
mechanism.

A proportional-integral-derivative (PID) controller was also
used for this purpose [19]. The PID controller is a generic
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recursive filter widely used in many applications. It adjusts
the system parameters based on the feedback from the recent
error between a measured process variable and a desired set
point. However, it is known that its control policy is highly
sensitive to the tuning of the coefficients used. The
methodology in [20] employed a workload estimation
technique using the Kalman filter [2]. However, the Kalman
filter is usually used for linear-Gaussian cases and, thus, its
efficiency may be severely degraded when highly nonsta-
tionary workloads need to be processed. Even though filter-
based techniques show nonmarginal improvement over the
other techniques, their efficiency is still unsatisfactory for
highly nonstationary workloads. This is because they focus
only on applying the filters to DVFS without tuning their
parameters using useful application characteristics.

2.4 Memory-Aware DVFS Techniques

Some of previous works further advanced DVFS techniques
by decomposing the decoding process into two different
subprocesses: CPU-bound work and memory-bound work
[21], [22], [23]. These approaches can select v/f pairs more
aggressively by recognizing that CPU is idle, while the
memory-bound work is performed. The effectiveness of
these approaches also depends on the accuracy of workload
estimations for CPU-bound work and memory-bound
work, respectively. Hence, the accurate workload estima-
tion is still essential for these approaches.

2.5 Contributions

The proposed method tackles the issues of existing methods
by customizing an adaptive filter to exploit some useful
application-specific characteristics. It has some resemblance
to the PID controller-based and Kalman filter-based
techniques, since we also adopt an adaptive filter called
the Particle Filter [11]. However, the PF is more powerful
than the PID controller and Kalman filter in the sense that it
can handle even nonlinear/non-Gaussian time-varying
workloads [10]. Furthermore, our PF is customized for
video decoding by exploiting some useful application
characteristics. The major goal of this work is to propose
an accurate workload estimation method; hence, we do not
distinguish the CPU-bound work and memory-bound work
in this paper. However, it can be easily extended for this
purpose, since the proposed estimation method is gener-
ically presented in a vectored form.

3 MOTIVATION

The processing time of multimedia workloads, especially
those that have a large variation in their decoding time, is the
focus of this paper. There exist many standards for multi-
media applications, e.g., MPEG-2/4, H.264/AVC, and MP3.
Among these, we consider two popular video formats—
MPEG-2 and H.264, since their workloads are known to
typically have large variations in their execution time. The
time-varying property of their workloads is the largest
obstacle to the application of DVFS to low-power multimedia
applications, since the quality of DVFS critically depends on
the prediction accuracy of the frame decoding time.

The workloads we use consist of a series of picture
frames. There are three types of picture frames defined in
the MPEG and H.264 standards [27]. Each of the frames is

compressed in a different manner for lossy compression.
Even though lossy compression improves portability, it
increases the time-varying property of the video sequences.
Hence, the accurate prediction of the frame decoding time
has become a more challenging task in DVFS.

We were inspired to integrate two well-known ap-
proaches to the DVFS of multimedia applications in order
to capitalize on their strong points. The first one is from a
group of empirical methods which build regression models
based on profiling for the purpose of estimating the frame
decoding time with respect to the frame size. Fig. 1 shows
the relationships between the frame size and the execution
time obtained from one of these empirical methods. The
empirical method used in Fig. 1 correlates the decoding
time and the frame size in a linear fashion, where Figs. 1a
and 1b correspond to MPEG and H.264, respectively.

Fig. 1 shows that the empirical method is a feasible
solution for MPEG. However, it is not a feasible method in
the case of H.264, since the correlation between the frame size
and the frame decoding time is weak relative to the case of
MPEG. The weak correlation in H.264 is mainly due to the
more aggressive encoding used in H.264 compared to MPEG.
Obviously, we need a higher order function to improve the
estimation accuracy for H.264. Moreover, the accuracy will
be further improved if we provide a mechanism which
enables us to adjust the decoding time variation in conjunc-
tion with the higher order function.

There is also a critical issue common to MPEG and
H.264. The model is fitted based on profiling, meaning that
the parameters should be tuned during the design time.
Hence, this may cause severe estimation errors when it
encounters a video clip which has a completely different
nature from the training clips. In other words, the model
should be transformed into an online version to track the
nature of the video clip being decoded.
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Fig. 1. Relationships between frame size and execution time. (a) MPEG
decoding. (b) H.264 decoding.



The methods in the third group are statistical approaches
which mostly adopt adaptive filters (e.g., the Kalman filter)
to capture the time-varying nature of the video stream. The
strong point of these methods is that they are more robust to
workload variations than empirical methods, since they are
capable of correcting the estimation error thanks to their
error-feedback control mechanism.

The pros and cons of the two groups are clearly
depicted in Figs. 2 and 3. Fig. 2 compares the actual
decoding time and the time estimated by the Kalman filter
for a video clip in H.264. Similarly, Fig. 3 compares the
actual decoding time and the time estimated by a linear
function for the same video clip. One interesting observa-
tion in Fig. 2 is that the Kalman filter tracks the actual
decoding time well in terms of its magnitude, but with a
certain amount of delay. The delay becomes critical to
ensuring the estimation accuracy when the actual decoding
time of a certain frame abruptly changes compared to those
of its neighboring frames. In this case, the magnitude of the
estimation significantly deviates from the actual decoding
time, since the change in the actual decoding time is faster
than the adaptation speed of the filter. Intuitively, any
adaptive method has a delay effect. On the other hand, the
estimation by the linear function shows somewhat different
characteristics in Fig. 3. Its estimation is always in phase
with the actual decoding time. However, there is a certain
amount of discrepancy between the magnitudes of the
estimated and actual decoding times. This is because the
linear model (as well as other nonstatistical models) cannot
consider the variance of its input and output.

These examples motivated us to integrate the adaptive
filter-based method with the empirical method such that
the delay effect of an adaptive filter is compensated by the
empirical model, while retaining its accuracy in terms of the
magnitude. More precisely, to estimate current execution
time, our PF utilizes the current frame size information to
estimate the frame decoding time within the PF framework,
as in the case of the linear regression method, and then
refines the estimate using its error-covariance feature, by
acting as another adaptive filter. In other words, it first
estimates the decoding time using the linear regression
method and, then, removes the error by means of using the
PF. As a result, our PF guarantees a higher estimation
accuracy compared to other filter-based methods. To
achieve this, we identify three challenging issues as follows:

. We need an online regression model to estimate the
frame decoding time with respect to the frame size.
This model should be suitable for workloads which
have nonlinear characteristics such as H.264.

. We also need an adaptive filter with an error-control
feedback mechanism. This filter will track the time-
varying property of the workloads, while the
aforementioned estimator captures the other time-
independent properties of the workloads.

. We need to integrate the two estimators mentioned
above with negligible computational overhead.

More details are given in Section 5.

4 GENERIC PARTICLE FILTER

4.1 Overview

In most real-time applications, prior knowledge about the
phenomenon being modeled is available. This knowledge
allows us to formulate Bayesian models, where all inferences
on unknown quantities are based on the posterior distribu-
tion obtained from the Bayes’ theorem [11]. However, real-
time applications can be very complex, involving elements
of non-Gaussianity, high dimensionality, and nonstationar-
ity. To handle these complications, many different filters
have been proposed. The sequential Monte Carlo (SMC) [28]
method is a set of simulation-based methods which provide
a convenient and attractive approach to computing the
posterior distribution. The particle filter [11] is closely related
to the SMC method and is a technique for implementing a
recursive Bayesian filter. The main idea is that the PF
represents the posterior density by a set of random masses
(called particles) with associated weights and performs
estimation based on these particles and weights [10].

The particle filter algorithm operates recursively in two
stages: prediction and update. The prediction stage is to
modify each particle according to the existing system model.
For instance, to simulate the noise effect on the variable,
random noise is added to each particle. The update phase is
to reevaluate the weight of each particle based on the latest
measurement made. This process is also known as the
sequential importance sampling (SIS).

Usually, after a few recursive steps, all but a few particles
will have negligible weights. This issue is called the
degeneracy phenomenon and should be handled appropri-
ately, since it has a harmful effect on the accuracy of the PF.
To resolve this issue, the PF needs to resample the particles.
In the resampling step, the PF discards the samples with
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Fig. 2. Phase delay between actual decoding time and estimated
decoding time of the Kalman filter.

Fig. 3. Estimation of the linear regression method.



low importance weights and multiplies those with high

importance weights. Of note is that the effect of the

degeneracy problem was rather marginal in this study,

due to the large variations of the workloads.
A graphical representation of a PF is shown in Fig. 4 [24].

This figure shows the basic idea of the particle filter that

represents the posterior density by a set of random particles

with associated weights. At the top, the PF starts with

uniformly weighted particles (the top yellow dots) which

approximate the prediction density (the top red line). Then,

the PF computes the importance weight of each particle (the

top purple dots, fxit; witg
Ns

i¼1). In this situation, the resam-

pling step is executed, because all but a few particles will

have negligible next estimation values. The last step is the

prediction based on weighted particles. This process is

executed recursively.

4.2 Generic Particle Filter Details

The objective of particle filtering is to track a time-evolving

variable of interest. To define this more formally [10],

consider the evolution of the state sequence fxt; t ¼
0; 1; . . .g. Here, xt is a vector of states at time t given by

xt ¼ ftðxt�1;vt�1Þ; ð1Þ

where ft is a (possibly nonlinear) function of xt�1 and vt�1, an

i.i.d. process noise at time t� 1. The objective of tracking is

then to estimate xt recursively from measurements

zt ¼ htðxt;ntÞ; ð2Þ

where ht is a (possibly nonlinear) function of xt and nt, an

i.i.d. measurement noise. We are particularly interested in

filtered estimates of xt based on the measurement sequence

z1:t ¼ fzk; k ¼ 1; 2; . . . ; tg up to time t. These two equations

are known as the state and measurement equations,

respectively.
The tracking problem from a Bayesian perspective

requires constructing the pdf pðxtjz1:tÞ. Let fxit; witg
Ns

i¼1 (Ns

is the number of particles) denote a random measure that

characterizes the posterior pdf pðxtjz1:t, where fxit; i ¼
0; . . . ; Nsg is a set of support points with associated weights

fwit; i ¼ 1; . . . ; Nsg. The weights are normalized such thatP
i w

i
t ¼ 1. Using the principle of importance sampling [11],

we can calculate the weights as follows:

wit / wit�1

p
�
ztjxit

�
p
�
xitjxit�1

�
q
�
xitjxit�1; zt

� ; ð3Þ

where qð�Þ is a proposal distribution called an importance

density [10]. Filtering via a PF thus consists of the recursive

propagation of the importance weights wit and particles xit
as each measurement is received continuously.

The choice of the importance density plays a crucial role
in the overall design. We can derive the optimal importance
density and weights from the SIS algorithm as follows [10]:

q
�
xtjxit�1; zt

�
¼
p
�
ztjxt;xit�1

�
p
�
xtjxit�1

�
p
�
ztjxit�1

� : ð4Þ

Plugging (4) into (3) yields

wit / wit�1p
�
ztjxit�1

�
; ð5Þ

which states that the importance weights at time t can be
computed before particles are propagated to time t.

To solve the degeneracy problem, a suitable measure of
an algorithm is the effective sample size N̂eff introduced in
[29], which is estimated as follows:

N̂eff ¼
1PNs

i¼1

�
wik
�2
: ð6Þ

According to this equation, a small N̂eff indicates severe

degeneracy and vice versa. Also, the threshold, Nth, is set

by the user. To handle the degeneracy problem, if N̂eff is

lower than Nth, we invoke the resampling algorithm to

avoid it. Resampling involves the mapping of the random

measure fxit; witg into a random measure fxit; 1=Nsg with

uniform weights.
The marginal distribution pðxtjztÞ satisfies the following

recurrence formula:

. Update:

pðxtjz1:tÞ ¼
pðztjxtÞpðxtjz1:t�1ÞR
pðztjxtÞpðxtjz1:t�1Þdxt

: ð7Þ

. Prediction:

pðxtjz1:t�1Þ ¼
Z
pðxtjxt�1Þpðxt�1jz1:t�1Þdxt�1: ð8Þ

This general and simple algorithm forms the basis of

most particle filters.
Consider the case where 1) the state function is

represented by a nonlinear polynomial equation, 2) the
measurement equation is linear (in this work, Hk is unity
because an estimation value is mapped to an observation
value), and 3) all the random particles in the model are
additive Gaussian because there is no information on the
distribution of decoding time. Such a system is given by
[10], [11]:

xt ¼ ft�1ðxt�1Þ þ vt�1; ð9Þ

zt ¼ Htxt þ nt; ð10Þ

where vt�1 and nt are mutually independent zero-mean

white Gaussian with covariances Qt�1 and Rt, respectively.
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Fig. 4. A pictorial description of the particle filter.



Then, the optimal importance density and pðztjxt�1Þ are
also Gaussian:

. Update:

pðztjxt�1Þ ¼ N ðzt; bt;StÞ; ð11Þ

St ¼ HtQHT
t þR; ð12Þ

bt ¼ Htft�1ðxt�1Þ: ð13Þ

. Prediction:

pðxtjxt�1; ztÞ ¼ N ðxt; at;�tÞ; ð14Þ

at ¼ ft�1ðxt�1Þ þ�tH
T
t R�1ðzt � btÞ; ð15Þ

�t ¼ Q�QHT
t S�1

t HtQ; ð16Þ

where Nð�Þ is a Gaussian distribution represented by its
mean and covariance and at and �t are the mean and
covariance of (14), respectively. Also, bt and St are mean
and covariance of (11), respectively. On the other hand, Hk

and fkð�Þ are an observation matrix and a (possibly
nonlinear) state function, respectively. Q and R are the
update and measurement error covariances, respectively.

Fig. 5 outlines the generic particle filter algorithm which
is widely used [10]. The generic particle filter might be
applied to a DVFS technique for multimedia applications
as it is. Two key steps of a generic particle filter are the
sequential importance sampling and resampling. There are
many more types of particle filters and many other variants
have been proposed. Further optimizations are possible by
reflecting the domain knowledge. The proposed PF-based
DVFS algorithm for multimedia decoding will be presented
in Section 5. In this section, we provide some preliminary
materials to facilitate the explanation in Section 5. For a
more thorough treatment of this topic, the reader is directed
to [10]. Finally, the estimated value, x̂t, is calculated byPNs

i¼1 x
i
t � wit.

To summarize, the PF can handle the estimation of even
nonlinear/non-Gaussian workloads. Its estimation accuracy
critically depends on how fkð�Þ, hkð�Þ, Q, and R are defined.
We define fkð�Þ using the relationship between the frame
decoding time and frame size, while setting Q and R based
on the past history of observations and measurements,
respectively, as will be discussed in Section 5.

5 PROPOSED METHOD

5.1 Overall Structure

The overall structure of our method is shown in Fig. 6. Once
a video stream is transmitted to a client system, it decodes
the frames in their transmission order. In the case of
software video decoders, they typically consist of three
layers. In the application layer, there is a software video
decoder for decoding the video streams. In the OS layer,
there is a DVFS driver which sends an appropriate v/f pair
to the power management IC (PMIC) in the HW layer for
the purpose of controlling the voltage and frequency levels
of the target processor. Also, a timer driver can be utilized
for the estimation of the decoding time. Note that the timer
measures the execution cycles of each frame decoding
rather than the decoding time. Once it is fed to the particle
filter, it is multiplied by the inverse of the current clock
frequency to check the deadline miss. Also, it is multiplied
by the inverse of the maximum clock frequency for being
used in the next frame decoding estimation. In our case,
there is an additional SW module called DVFS module for
supporting DVFS in the application layer. DVFS module
internally has two submodules—Particle filter and v/f selector
(shaded modules in Fig. 6). The PF estimates the frame
decoding time with its Updater and Predictor; v/f selector in
the DVS module chooses an appropriate v/f pair based on
the estimation from the PF.

5.2 Tuning the Parameters of PF

To apply the PF to DVFS-support video decoders, we first
tune its essential parameters, as discussed in Section 4.2.
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Fig. 5. Generic particle filter.

Fig. 6. Overall structure of proposed method.



The focus of this section is how to customize the PF for
video decoders based on the relationship between the frame
size and decoding time.

There are three types of frames in multimedia applica-
tions. We dedicate one particle filter to each frame type in
order to easily track the workload variations. The para-
meters of these PFs are identical in their formulation, but
their values may differ, since they would experience
different workloads. More specifically, we want to custo-
mize the parameters (state function ftð�Þ, observation
matrix Ht, estimation error covariance Q, and measure-
ment error covariance R) of (11) through (16) by correlating
the frame decoding time with the frame size. The
coefficients of these parameters are dynamically updated
during the decoding process. In other words, they are time-
varying parameters in nature. The observation matrix, Ht,
is exceptionally set to unity in our method, since we can
always know the exact observation value by measuring the
decoding time using a timer.

To summarize, the state and measurement equations
used are (9) and (10), respectively. We present more details
of the state function ft in Section 5.2.1. Section 5.2.2
explains how the covariances Q and R of the variables
vt�1 and nt in (9) and (10) are computed. The observation
matrix Ht is set to unity as explained above.

5.2.1 State Function ftð�Þ
The state function ftð�Þ provides a rough estimate of the
frame decoding time when a frame is decoded. This rough
estimate is finely tuned by the other parameters (R and Q)
based on the error-correcting feedback mechanism.

We define the state function ftð�Þ in a polynomial form,
since a polynomial can easily be adjusted by controlling its
order and coefficients. The main challenge in defining ftð�Þ
is twofold. First, we need to determine an appropriate order
of a polynomial to achieve reasonable estimation accuracy.
Second, we need to minimize the computational overhead
in updating its coefficients, since they are updated during
runtime (online) in our method. The accuracy and compu-
tational overhead are usually inversely related to respect to
the order of the polynomial. In other words, a higher order
polynomial improves the accuracy at the expense of a
significant increase in the computational overhead.

To resolve this issue, we start from a first-order
polynomial function, as shown in (17) and then explore
higher order functions to identify the best polynomial
function for our purpose.

ftðsÞ ¼ c1sþ c0: ð17Þ

In (17), s is the frame size and ftðsÞ is the estimated
decoding time for the given frame size at time t. We need to
determine two coefficients c1 and c0 such that the difference
between ftð�Þ and the actual decoding time (xt) is mini-
mized, in order to maximize the estimation accuracy. If a PF
experiences n frames up to time t, then the estimation error
can be written as

error ¼
Xn
i¼1

ðxtðsiÞ � ftðsiÞÞ2; ð18Þ

¼
Xn
i¼1

ðxtðsiÞ � ðc1si þ c0ÞÞ2: ð19Þ

To minimize the error shown in (19), we take the
derivatives of (19) with respect to c1 and c0, respectively,
and then set each of them to zero:

@error

@c1
¼ �2

Xn
i¼1

ðxi � c1si � c0Þsi ¼ 0; ð20Þ

@error

@c0
¼ �2

Xn
i¼1

ðxi � c1si � c0Þ ¼ 0: ð21Þ

Representing these two equations in a matrix form yieldsX
si

2
X

siX
si n

" #
c1

c0

� �
¼

X
sixiX
xi

" #
: ð22Þ

For notational simplicity, let us denote each element of
the matrix as a single variable, namely, in ¼

Pn
i¼1 s

2
i ,

jn ¼
Pn

i¼1 si, kn ¼
Pn

i¼1 sixi, and ln ¼
Pn

i¼1 xi.
Then, we can rewrite these elements in a recursive manner

based on the results in the previous time step as follows:

in ¼ in�1 þ s2
n; ð23Þ

jn ¼ jn�1 þ sn; ð24Þ

kn ¼ kn�1 þ snxn; ð25Þ

ln ¼ ln�1 þ xn: ð26Þ

Equations (23) through (26) are more appropriate for online
estimation, since they can greatly reduce the computation
overhead by reusing the previous results.

After plugging the above variables for the variables into
(22), we can rearrange (22) with respect to c1 and c0. Then, c1

and c0 for n can be written as

c1 ¼
nkn � jnln
nin � ðjnÞ2

; ð27Þ

c0 ¼
inln � jnkn
nin � ðjnÞ2

: ð28Þ

The state function is updated using (27) and (28), whenever
a frame is decoded.

We can generalize the state function to consider a higher
order polynomial such that ftðsÞ ¼

Pn
i¼0 cis

i. Then, we can
obtain higher order polynomial coefficients in a recursive
manner as we did for the first-order polynomial.

To assess the effectiveness of the aforementioned online
version of the state function, we first investigated the
estimation accuracy of the first-order state function by
measuring the adaptation speed of its coefficients. As shown
in Fig. 7, both coefficients (c1 and c0) converge to the values
obtained from the offline analysis after experiencing about
100 frames. Using higher order state functions also
produced similar results.

Next, we analyzed the estimation accuracy and compu-
tation overhead of the state function with respect to its
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order, as shown in Fig. 8. Obviously, the estimation

accuracy is improved as the order of the state function

increases, while incurring more computational overhead.

We take the first-order polynomial as a state function since

its mean square error (MSE) is small enough to achieve the

reasonable accuracy while paying small computational

overhead. However, higher order polynomials can be used

for future video codecs such as H.264 since they show more

nonlinear behavior in video decoding. In contrast, the linear

filters including the Kalman filter cannot handle the highly

nonlinear behavior expected in future video codecs.
Choosing the first-order polynomial may incur severe

accuracy degradation of the state function, especially for

H.264, since it shows weak correlation between the frame

size and the decoding time compared to MPEG.
However, notice that the degradation of the accuracy

incurred by choosing a lower order polynomial for the

state function is compensated by the other parameters (Q

and R) which perform the fine-tuning of the estimation

based on the error-correcting feedback mechanism pro-

vided by PF. More detailed experimental results will be

discussed in Section 6.

5.2.2 Error Covariance, Q and R

The estimation error covariance (Q) and measurement error

covariance (R) finely tune the rough estimation from the

state function ftð�Þ. More precisely, Q adjusts the current

estimate by comparing it with the previous estimates.

Similarly, R adjusts the current estimate by comparing it

with the previous measurements.

First, we introduce an online model for Qt as follows: let

x̂t be the estimated time, which is equivalent to ftðsÞ
obtained from the predictor module. The estimation error

covariance at time step t is the mean square error of the

prior estimated values and the present estimated value.

This is given by

Qt ¼ IE½ðx̂t�1 � x̂tÞ2�; ð29Þ

¼ 1

t

Xt
i¼1

ðx̂i�1 � x̂iÞ2: ð30Þ

Equation (30) is inefficient from the computational perspec-

tive, since the system must keep the entire history of

estimates until time step t. To reduce the computational

complexity of (30), we transform (30) in a recursive form, as

shown in (31):

Qt ¼
t� 1

t
Qt�1 þ

1

t
ðx̂t�1 � x̂tÞ2: ð31Þ

Then, Qt becomes a function of Qt�1, x̂t, and x̂t�1; hence, its

computational complexity can greatly be reduced.
Similarly, the measurement error covariance is also

computed in a recursive manner as follows:

Rt ¼
t� 1

t
Rt�1 þ

1

t
ðzt � x̂tÞ2: ð32Þ

Note that we can make Qt and Rt more sensitive to the

estimation and measurement errors for capturing the

nonstationarity by setting a finite-size window as discussed

in [20].

5.3 v/f Selector

The basic concept of DVFS is to dynamically adjust the

v/f pair to optimize the performance by making use of

the trade-off between the performance and energy

consumption. The proposed PF discussed in the previous

section provides the decoding time estimate for each

frame. The v/f selector determines an optimal v/f pair

for each frame based on the estimate x̂t. The deadline and

v/f switching overhead are denoted by DL and SO,

respectively. Then, the optimal frequency for decoding

the tth frame with the minimum energy consumption, but

without violating DL, can be chosen as follows, because

the reciprocal of time is the frequency:
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Fig. 7. Adaptation speed of coefficients of state function in online
environment. (a) c1. (b) c0.

Fig. 8. Computational overhead and estimation accuracy with respect to
the order of the state function. The red line is the computational
overhead and the bars are the mean square error.



f ¼ 1

minfx̂t þ SO;DLg
: ð33Þ

Obviously, DVFS-support processors provide only a

finite number of discrete frequencies, as shown in Table 2.

Let the supported frequency set F ¼ ff0; f1; . . . ; fn�1g,
where n is the number of v/f pairs. Also, F is an ascending

ordered set and fi denote the frequency of row i in the

DVFS table. Then, we choose v/f level, fi, such that fi <

f � fiþ1 in order not to violate DL. In other words, if the

calculated f is between fi�1 and fi, then the v/f selector

takes one step more than the calculated f in order not to

violate DL. For example, when the processor uses seven

v/f levels, f is 421 MHz by (33), and then fi must be set to

f4 in Table 2, since it is usual to specify the minimum

voltage level to support the given frequency in the

specifications.

5.4 Implementation

We implemented two video decoders (MPEG and H.264)

equipped with the proposed PF-DVFS. In our implementa-

tion, we integrated our method with one of the well-known

video decoders called mplayer [26]. Note that we take a first-

order polynomial for the state function, since it provides

reasonable accuracy with marginal computation overhead.

We show the pseudocode for the video decoders in Fig. 9.

More details are as follows:

1. Line 1: We first initialize the parameters of PF-DVFS
such as the number of particles, Qt, and Rt. The
initial weight of particle i is denoted by wi0. We
initially assign the same weight to all particles by
assuming a uniform distribution.

2. Lines 2-27: At each time step t (or each frame), the
loop from line 2 to line 27 is executed for frame
decoding with PF-DVFS.

3. Line 3: The type and size of the current frame are
obtained from its header.

4. Lines 4-9: We estimate the decoding time of the
current frame by summing the weighted particles. For
the first two frames, we do not perform the estimation
due to the lack of any previous history. In this case, we
make a conservative assumption to avoid missing
deadlines by setting the estimation to its deadline.

5. Lines 10-12: The estimated decoding time is passed
to the v/f selector. The v/f selector determines the
optimal v/f pair and adjusts the processor’s v/f as
discussed in Section 5.3.

6. Line 13: Once the v/f of the processor is set, the
processor decodes the current frame.

7. Lines 14-16: Calculate each element of the matrix in
(22). We can calculate these elements in a recursive
manner in (23-26).

8. Lines 17-19: Update the state function ftð�Þ as
discussed in Section 5.2.1.

9. Line 20: Update both the measurement error
covariance and estimation error covariance.

10. Lines 21-24: The particles are distributed based on
the state function and error covariance. Also, we
recalculate and normalize their weights. The weights
wit are obtained by (5), which becomes

wit / wit�1Nðzt; bt;StÞ ð34Þ

due to (11). In (34), bt and St can be calculated by

(13) and (12), respectively.
11. Lines 25-27: If N̂eff is less than Nth, the resampling

process is invoked to avoid the degeneracy problem.
Unlike the generic PF, the reduced number of
resampling also enables the proposed algorithm to
avoid recalculating N̂eff for every frame, since
calculating N̂eff is essential but large computational
overhead by (6). The proposed algorithm computes it
every 20 frames, which incurs only about 0.1 percent
accuracy degradation according to our experiments.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setting

We conducted four sets of experiments to compare the

performance of our methodology with that of the existing

filter-based methods, such as WMA, PID, KF [20], and

linear model,1 including our own for MPEG and H.264

video clips. In the first set of experiments, we performed a

series of experiments to tune the number of particles in our

method. In the second set of experiments, we examined
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Fig. 9. Adaptive particle filter.

1. We improved the linear model proposed in [6] such that it could
perform online estimation as discussed in Section 5.



how quickly and precisely each method could track the
variation of the workload. In the third set of experiments,
we tested how well each technique cooperates with DVFS in
terms of the estimation accuracy and energy saving, while
satisfying the real-time constraint. In the fourth set of
experiments, we performed a sensitivity analysis of each
method with respect to the number of v/f pairs.

For these sets of experiments, we validated our method
by measuring the energy consumption of an ARM1176-
based testbed (SMDK6410 [25]) adopting the S3C6410
processor. This processor supports up to seven v/f pairs
for DVFS and a maximum frequency of 800 MHz in Table 2.
We extended a popular video player called mplayer [26] to
support DVFS, while it is running on the evaluation board,
to compare the performance of the aforementioned DVFS
methods from various aspects including the energy saving.

We used eight video clips in all of the experiments. The
clips are classified into two groups according to their
mean absolute deviation (MAD), which is defined as the
difference in the standard deviations of the absolute
decoding times between two consecutive frames. MAD is
more appropriate than the standard deviation of the frame
decoding times2 to quantify the nonstationarity of video
clips, since it even considers the order of the frames to be
decoded. Table 1 summarizes the characteristics of the
video clips used in our experiments.

6.2 Tuning the Number of Particles

We first performed a series of experiments to tune the
number of particles in our method, since it is a highly
critical parameter to obtain a good trade-off between the
estimation accuracy and runtime overhead (RO).

Fig. 10 shows the estimation accuracy and runtime
overhead of our method with respect to the number of
particles when mplayer decodes an H.264 video clip,
“RedsNightmare.” The accuracy of the PF saturates with
a few particles (bold line), as shown in Fig. 10. More
precisely, the estimation accuracy of our method becomes
stable with less than 10 particles. This implies that our
method exploits the application characteristics (the rela-
tionship between the frame size and decoding time) well
for tuning the parameters of the PF. On the other hand,
the computational overhead is almost linearly proportional
to the number of particles, as shown by the dotted line in
Fig. 10. Based upon the results shown in Fig. 10, we used
10 particles to validate our method.

6.3 Performance Comparison of DVFS Methods

We next evaluated the quality of our method with only 10

particles by comparing it with other methods in terms of the

estimation accuracy and convergence speed. Fig. 11a shows a

comparison of the speed of convergence of the different

methods for achieving reasonable estimation accuracy. The

estimation accuracy was measured in terms of the mean

square error by comparing the estimated and actual decod-

ing times. In our experiments, the proposed method (PF)

outperformed all of the other techniques in terms of the

estimation accuracy and convergence speed, even though it

utilizes only 10 particles in order to minimize the computa-

tional overhead. We also compared the performance of all of

the methods for all of the tested video clips in terms of the

MSE, as shown in Fig. 11b. The results confirm that the PF

outperforms all of the other methods, particularly for the

video clips with large variations.
To compare the performance of the proposed method

with that of the other existing methods more thoroughly
from the DVFS perspective, we borrowed four useful
metrics from [20] as follows:

LEE ET AL.: APPLICATION-SUPPORT PARTICLE FILTER FOR DYNAMIC VOLTAGE... 1265

2. Most previous approaches used this metric for indicating the
nonstationarity of video clips.

TABLE 1
Video Clips Used for Simulation

TABLE 2
DVFS Table

Fig. 10. Variation of the estimation accuracy and runtime overhead with
the number of particles.



. The Decision Accuracy (DA) indicates how closely
the DVFS with the target workload estimation
method selects a v/f pair to the optimal v/f pair.

. The Hit Ratio (HR) is the ratio of the number of v/f
pair selections that are identical to the selections of
an ideal case to the total number of selections. We
call the ideal case oracle-DVFS,which is possible only
with offline analysis.

. The EC is the total energy consumed by a processor
normalized to the energy consumption of the
processor without DVFS.

. The Deadline Miss Ratio (DMR) is the ratio of the
deadline-missing frames to the total number of
frames.

. The Computation Overhead Ratio (COR) is the ratio
of the increase in the execution time of the modified
mplayer (with DVFS scheme) to the execution time
of the original mplayer (without DVFS scheme).
Note that the modified mplayer does not change its
v/f pair, even though it performs the estimation.
Thus, the runtime of modified mplayer includes the
computing time for the estimation, but excludes the
v/f pair switching time.

Based upon the above metrics, we compared the
aforementioned DVFS methods, including our own, for
both the MPEG and H.264 video clips, while setting the
number of v/f pairs to four. The comparison results are
summarized in Table 3, Figs. 12 and 13.

In Table 3, all of the compared methods showed
impressive results for the MPEG video clips tested. More
specifically, all of the methods achieved both DA and HR
values higher than 90 percent, and there was not much
difference in their efficiency. However, completely different
results were obtained when they were applied to H.264, as
shown in Table 3. In the case of H.264, all of the methods
except for our approach showed a large degradation in both
the DA and HR compared to the MPEG cases. For instance,
the online linear model (LIN) showed a degradation in the
HR of almost 50 percent. The filter-based methods showed
less degradation compared to LIN, but their degradation
ratio of HR was still more than 20 percent, while that of our
method was only about 5 percent.

The different results in the case of MPEG and H.264 can
be understood by comparing the MADs shown in Table 3,
where the MAD of the H.264 video clips is much larger than
that of the MPEG video clips. For instance, the MAD of the
clip “cindy” in H.264 is about 50 times larger than that of
the same clip encoded in MPEG. This is due to the more
aggressive encoding scheme of H.264. In other words, the
aggressive encoding scheme of H.264 increases the time-
varying property of frame decoding, which results in a
larger MAD. Even for the video clips with a large MAD, our
method provides reasonable estimation accuracy in a stable
manner, unlike the other methods, since it has an applica-
tion-aware state function and error-correcting feedback
mechanism. More specifically, the poor estimation accuracy
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Fig. 11. Performance comparison. (a) Convergence speed of DVFS
methods. (b) MSE comparison.

TABLE 3
Estimation Accuracy



of LIN and WMA is attributed to the lack of an error-
correcting feedback mechanism, while the filter-based
methods, except for ours, are ignorant of the application
characteristics in their estimation.

The estimation accuracy of each method directly affects
the quality of the DVFS. As shown in Fig. 12, all of the
methods are comparable to the oracle case in terms of
their energy saving, meaning that their energy efficiency is

almost identical and close to the best efficiency that can be
achieved. However, they show completely different
efficiencies in maintaining the picture quality, as shown
in Fig. 13. In Fig. 13a, all of the methods except our own
and LIN show severe deadline misses for some of the
video clips tested. In other words, they severely sacrifice
the picture quality, even though their energy efficiency is
almost identical to that of our method and LIN. The
degradation of the picture quality in these methods
becomes worse when they are applied to the H.264 video
clips, due to the higher MADs. In this case, even the LIN
model shows a large DMR for most of the video clips.
However, our method shows a stable DMR which is
6.88 percent on average.

Finally, we compared the COR for all of the methods in
Table 4. Even though the PF shows superior performance in
the other metrics, it also shows comparable performance to
the other methods in terms of the COR.

To summarize, our method outperforms the other
methods tested herein, especially for those video clips
whose MADs are large. The superiority of our method is
attributed to its application-aware state function and error-
correcting feedback mechanism. Such estimation accuracy
directly impacts on the quality of the DVFS and, hence, our
method achieves an energy efficiency comparable to the
oracle case, while sacrificing the picture quality only
marginally, unlike in the case of the other methods.

6.4 Impact of v/f Levels

We also performed a sensitivity analysis of the DVFS
methods with respect to the number of v/f pairs. For this
purpose, we compared the energy saving and DMR of all
of the methods when the numbers of v/f pairs are four
and seven, respectively, and measured the HR, DA, EC,
and DMR for each case. The results of the sensitivity
analysis are shown in Table 5. For all of the metrics except
for the energy consumption, all of the methods being
compared show lower performance when the number of
v/f pair increases to seven. In terms of the energy
consumption, it is better to use more v/f pairs, since it
is possible to utilize the slack time more efficiently
according to (33). With respect to all the other metrics
used, however, using more candidate pairs lowers the
performances of the DVFS methods. Even in this situation,
the performance degradation ratio of our method is much
less than that of the others for all metrics except for the
energy consumption.
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Fig. 13. Comparison of deadline miss ratio. (a) MPEG video clips.
(b) H.264 video clips.

TABLE 4
Computation Overhead Ratio (COR, Percent)

Fig. 12. Comparison of energy consumption. (a) MPEG video clips.
(b) H.264 video clips.



To summarize, all of the methods including our own
provide higher energy efficiency with more v/f pairs.
However, the picture quality becomes worse, due to the
increased difficulty in selecting the optimal v/f pair.
Nevertheless, our method is less sensitive to the number of
v/f pairs, thanks to its highly accurate estimation capability.

7 CONCLUSION

In this paper, we proposed a novel DVFS technique for
estimating the characteristics of nonstationary workloads.
This technique exploits the particle filter, a sequential
Monte Carlo method for inferring the posterior distribution
in a Bayesian framework, and does not require any
profiling or extensive training. We enhanced and custo-
mized the generic particle filter so that it can be used for
estimating the execution time of the highly varying work-
loads encountered in DVFS applications by designing an
application-aware state function and an error-correcting
feedback mechanism.

The proposed technique was tested with real workloads
obtained from MPEG and H.264 video clips in terms of
various statistics. In particular, the proposed approach
outperformed all of the DVFS techniques examined herein
by 98.24 and 58.97 percent with respect to the accuracy and
energy savings, respectively, with little overhead. Our
results indicate that the proposed PF-based DVFS technique
can be a highly effective tool for reducing the energy
consumption in real-time embedded systems. As a final
remark, we will extend this work to consider CPU-bound
work and memory-bound work separately for further
improving its effectiveness.
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